Semisimple symmetric spaces without compact manifolds locally modelled thereon
نویسندگان
چکیده
منابع مشابه
Counting Locally Symmetric Manifolds
We give quantitive estimates for the number of locally symmetric spaces of a given type with bounded volume. Explicitly, let S be a symmetric space of non-compact type without Euclidean de Rham factors. Then, after rescaling appropriately the Riemannian metric, the following hold. Theorem A If rank(S) = 1 and S ≇ H2,H3, then there are at most V V Riemannian manifolds, locally isometric to S, wi...
متن کاملIsospectral locally symmetric manifolds
In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
متن کاملFourier Analysis on Semisimple Symmetric Spaces
A homogeneous space X = G/H of a connected Lie group G is called a symmetric homogeneous space if there exists an involution σ of G such that H lies between the fixed point group G and its identity component Go . Example 0. For a connected Lie group G′, put G = G′×G′, σ(g1, g2) ) = (g2, g1) and H = G. Then the homogeneous space X = G/H is naturally isomorphic to G′ by the map (g1, g2) 7→ g1g−1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 2015
ISSN: 0386-2194
DOI: 10.3792/pjaa.91.29